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This paper develops an alternative approach to  evaluating the arbitrary constants 
found in Gill’s solution for the boundary-layer free-convection regime in a vertical 
rectangular enclosure. The new method consists of calculating the net upward flow 
of energy through the enclosure and setting it equal t o  zero near the top and bottom 
boundaries of the cavity. The present method takes into account the impermeable 
and adiabatic properties of the horizontal end walls. The overall Nusselt number 
derived on this new basis is shown to agree well with available experimental and 
numerical heat-transfer correlations. 

1. Introduction 
Gill (1966) developed a now well-known .theory on the boundary-layer regime for 

free convection in a vertical rectangular cavity with the side walls at different tem- 
peratures and the top and bottom end walls adiabatic. This free-convection problem 
is of great practical importance, particularly because of its pivotal position in the 
engineering of thermal insulations. In  developing his theory, Gill relied heavily on 
visual observations and experimental measurements reported for the same regime by 
Elder (1965). The Gill solution was based first on the assumption that a stratified 
fluid core exists far away from both vertical walls. Boundary-layer solutions were then 
obtained for the flow near the two vertical walls. Matching the boundary layers with 
the same core solution led to a consistent picture for the free-convection pattern 
between the two tall vertical walls of the enclosure. However, owing to  the boundary- 
layer-type approximations, this solution cannot satisfy all the boundary conditions 
physically present in the vertical direction. 

In  total, four conditions account for the fact that the top and bottom walls are 
impermeable and adiabatic. Gill’s solution contains only two arbitrary constants. As 
argued by Quon (1977), some judgement is required before deciding which conditions 
ought to be considered to best determine the two constants. Gill chose to invoke the 
two impermeability conditions, $ = 0 at z = 5 4, thus determining one constant as 
C = 0-912.t The second constant was found to be zero on the basis of the symmetry 
of the top and bottom wall conditions imposed, and for this rewon it does not appear 
explicitly in Gill’s final solution. Quon (1977) attempted to determine C by matching 
Gill’s solution with a numerical solution for the stream function and vertical velocity 
profile in the cavity. The difficulty associated with this approach comes from the 

t Throughout this article we use the resulte already derived by Gill in his 1966 paper. 
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fact that Gill’s velocity profile is a discontinuous approximation of the real profile 
measured by Elder (1 965). 

The objective of this note is to  develop a conceptually different basis for evaluating 
the constants for Gill’s boundary-layer solution. Gill’s result is representative of the 
boundary-layer regime in the cavity, in regions not very close to the horizontal walls 
at z = + t .  Owing to  the approximation mentioned above, this result is ezpecled to  
break down in the two regions near the top and bottom boundaries. Therefore it seems 
inappropriate to pin the boundary-layer solution to conditions present in a domain 
where the boundary-layer approximation no longer applies. This opinion is also 
supported by the fact that Gill’s theory, with C derived from the impermeable end 
condition, predicts infinite horizontal velocities u and infinite vertical temperature 
gradients aT/& along the horizontal walls. Moreover, if we try to  discard imper- 
meability and use instead the adiabatic condition aT/& = 0 at z = f 4, we soon find 
that the boundary-layer solution cannot meet an adiabatic condition a t  any z. Noting 
that 8T/& = 0 is equivalent to  requiring 8q/az = 0, this conclusion is more evident 
in Quon’s 1977 paper, where q(z), which is an odd function of altitude, is displayed 
graphically. 

Consider the physics of the boundary-layer regime in an enclosure where the left wall 
is warmer than the right wall, as analysed by Gill. Energy is being transferred from 
left to right somewhat indirectly, by first heating the fluid rising along the left wall. 
As the fluid circulates clockwise, energy is released as the descending branch comes 
in contact with the colder wall. The local Nusselt number is highest near the bottom 
of the left wall and, diametrically opposite, near the top of the right wall. Looking 
now at the fluid circulating in the enclosure, the natural counterflow carries energy 
upwards between the two vertical walls. This vertical energy ‘current ’ increases from 
z = - to z = 0 as the counterflow receives more energy from the left compared with 
the energy i t  looses to the right. The opposite holds in the upper half of the cavity, 
from z = 0 to z = t. Overall, the vertical energy flux Q per unit time and width is an 
even function of altitude which reaches its maximum at the midheight z = 0.  At the 
same time, the vertical energy current is zero in the top and bottom end regions. 

In  what follows we use the condition of zero vertical energy flux to determine the 
arbitrary constant appearing in Gill’s solution. This choice is consistent with the 
physics of the fluid flow inside the cavity, where Gill’s approximations apply. At the 
same time, the statements &( 4) = 0 take into account in an average way all four 
conditions applicable along the solid top and bottom boundaries, where, as we said 
earlier, Gill’s solution breaks down. There is also a practical reason for modifying the 
boundary-layer solution along these lines. Correlations for the overall Nuaselt number 
for heat transfer between the vertical walls of the enclosure have been reported in 
many experimental and numerical investigations, as summarized by Ostrach (1  972). 
It is generally agreed that the overall Nusselt number obeys a relationship of the 
form Nu = aRa*(H/L)C when 2 K H/L c 20. However, a long-ranging controversy 
persists regarding the exact values of the ‘constants’ a, b and c. We demonstrate in 
this article that a;, b and c are actually functions of Ra and H/L.  For the first time, a 
theoretical explanation will be provided for the present disagreement regarding the 
average Nusselt number Nu. 
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2. The upward flow of energy 
To determine Q, consider an energy-flux integral over any cross-section at 

Q 
constant altitude : 

Here p, cp and h are the fluid density, specific heat at constant pressure and thermal 
conductivity, respectively. In  terms of Gill’s dimensionless variables, (1) becomes 

Next we evaluate the integrals accounting for convection and conduction in (2) 
above. We do this by splitting each integral into two parts corresponding to  the 6wo 
solutions available for the two vertical boundary-layer regions. The procedure involves 
some algebra, which will be omitted here. The final result is 

(3 )  

ahowing that the convective contribution to Q, the first term in (3), increases linearly 
with L/l, the ratio of cavity thickness to boundary-layer thickness. Recalling that 
L/l = (RaL /H) f ,  the convective part tends to dominate Q as the Rayleigh number 
Ra increases. Examining result (3), we also find that the conductive contribution to  
Q decreases if the cavity becomes more slender. Another intuitively obvious feature 
of (3) is that Q is an even function of z, depending on z only via q2. The vertical energy 
current reaches its maximum at the midheight, where q = 0. 

QL L c3(1 -q2)3 2( 1 + 3 q y 3  
AH(T, - Tb) = 7 4( 1 + 3q2)9  - (g)2 c4(7 - q2) (1  - qB)’ (1 + qz)*’ 

Zero energy flow at z = & + then requires 

where qe is the end value of the altitude parameter q, viz. 

d & + )  = *Qe.  (5) 

The end value qe is actually a function of C which can easily be obtained by integrating 
Gill’s equation (6.19) from z = 0 to z = +. The result of this operation is plotted in 
figure 1. Combining figure 1 with (a), we now have a means of estimating the boundary- 
layer-solution constant C (as well as qs) in terms of the new group Ra.)N/L. The final 
result provided by the condition of zero energy upflow has been summarized in figure 2. 
One interesting aspect of this result is that in the limit Ra+H/L+ao it becomes 
identical to Gill’s result based on top and bottom impermeability, viz. C = 0.912 and 
qe = 1. This coincidence is not surprising since in this limit the vertical energy flux 
is all by convection, hence the requirements of zero energy flux and impermeable 
end walls become identical. 

By considering the Q = 0 conditions near the top and bottom of the enclosure, we 
have shown that Gill’s boundary-layer solution is affected not only by the group 
Ra L/H but also by the new group Ra)  H / L .  That is, when the boundary-layer regime 
as envisioned by Gill prevails in the cavity, the flow field, temperature pattern and the 
heat transfer are affected by the Rayleigh number R a  end the aspect ratio H/L 

19-2 
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FIGURE 1. Dependence of Gill's constant C on the end parameter q, = q(4). 
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FIUURE 2. Influence of new group Ra+ H I L  on C ,  q, and Nu 1/L. 
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independently. As we show below, this conclusion is strongly supported by the Nusselt 
number data available in the literature. The opportunity of providing for the first 
time a theoretical explanation for effects observed both experimentally and numeric- 
ally is the main reason for reporting the present addendum to Gill’s solution. 

3. The overall Nusselt number 
Consider now the overall Nusselt number describing the net heat transfer by free 

convection between the vertical walls of the enclosure. Gill in his 1966 paper stopped 
short of evaluating this number, which, as pointed out in the introduction, is a central 
result sought by many investigators for its practical value. We define the overall 
Nusselt number as 

WL NU = 
x-0 

Using the boundary-layer solution subject to the condition of zero energy upflow, Nu 
becomes 

The right-hand side of (7) is a number which, via C and qe (shown in figure 2), depends 
on the new group Ra+ H/L.  The integral appearing in (7) was evaluated numerically 
and the result is shown as the Nu(Ra L/H)-f curve on figure 2. In  the limit Ra+ x 
H / L  -+ 00, which may be regarded here as the ‘Gill limit ’, the overall Nusselt number 
is given by 

The overall Nu given by ( 8 )  is only 35 yo larger than the local Nu estimated by Gill 
for the midheight point z = 0. 

Figure 2 indicates that as soon as the new group Ra+H/L is less than about 100 
the overall Nusselt number departs from its asymptotic value. In  practical cases the 
departure is of the order of up to 30 %, a change which certainly cannot be overlooked 
in energy-thrifty thermal insulation systems. Figure 2 can be used directly bo evaluate 
Nu for any given aspect ratio and Rayleigh number based on the spacing between 
the vertical walls. 

Nu = 0.364 (Ra L/H)f as Ra) H / L  -+ 00. (8) 

4. Discussion 
We conclude this article with a brief survey of overall Nu correlations often quoted 

in the literature (see, for example, Ostrach’s 1972 review). Figures 3 and 4 show a 
limited selection of Nusselt number correlations via-d-vis t h e  theoretical result 
developed in the preceding section. The experimental correlations displayed on figure 
3 were developed by Eckert & Carlson (1961), Jakob (1949), MacGregor & Emery 
(1968), Seki, Fukusako & Inaba (1978) and Yin, Wung & Chen (1978). The correlations 
based on numerkal solutions of the free-convection heat-transfer problem (figure 4) 
were reported by De Vahl Davis (see Landis & Rube1 1970), Newel1 & Schmidti (1 970) 
and Pepper & Harris (1977). The numerical correlations in figure 4 are in superior 
mutual agreement compared with the experimental results in figure 3. In  either caae, 
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FIQURE 3. Comparison between the present solution and experimental Nusselt number oorrela- 
tions for H / L  = 5 and 10. --, present solution; ---, Seki et ul. (1978); -.- , Eckert & Carlson 
(1961);-----,MacGregor &Emery(l968);--..-, Jakoh (1949); - . . . .  . , Y i n e t d .  (1978). 

the present theory for the overall Nusselt number splits the field covered by these 
correlations right through the middle. 

The agreement between the present theory and the correlations based on numerical 
simulations is excellent, particularly near (Ra L / H ) f  z 10, which is exactly the range 
where Gill’s boundary-layer model is an acceptable approximation. Below this 
range of values the heat-transfer mechanism is slowly replaced by direct conduction 
in the horizontal direction. Above this range the boundary-layer picture becomes 
considerably more complicated owing to the presence of secondary and tertiary 
cellular flows, as discussed by Elder (1965). 

The theoretical Nusselt number developed in this article can be used with the same 
if not a higher degree of confidence than can heat-transfer correlations avaiiable 
today. In  particular, the Nusselt number corresponding to the Gill limit (equation 
( 8 )  and curve H/L-+oo  on figure 4) can be used with confidence for tall cavities, 
H I L  % 10. 

One last observation concerns the end value qe plot& on figure 2. It is significant 
that, even when the new group Ra) H / L  is extremely large, qe differs appreciably 
from its asymptotic value. The fact that  pe is less than one implies that fluid enters 
the warm (left) boundary layer at z = - 4 with finite vertical velocity and leaves the 
same layer at  z = 4 with finite vertical velocity also. This means tha2, in the two 
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FIUWRE 4. Comparison between the present solution and Nuwelt number correlations baaed on 
numerical studies ( H / L  = 5 and 10). -, present solution; ---, De Vahl Davis (see Lmdis & 
Rubel 1970); ---, Newel1 &Schmidt; --.--, Pepper &Harris (1977). 

corners, where the boundary-layer approximation breaks down, the flow field must 
also contain the following features. In the top corner the fluid flows to the right, 
hitting the top wall and slightly rebounding back into the cavity. Near the bottom 
corner a local vacuum draws fluid from the right and slightly above and to the right. 
into the tip of the boundary layer. The present, theory implies also that the corner 
effects will be more pronounced in short cavities, where Ba+ H / L  and qe are small. 
These observations are in qualitative agreement with published streamline patterns, 
particularly those of Quon (1972) for square cavities and those of Cormack, Leal & 
Seinfeld (1 974) and Imberger (1974) for shallow rectangular cmities. 

The author is indebted to Professors C. L. Tien and J. Imberger, who have been 
very helpful during his two-year residence a t  the University of California, Berkeley. 
This work was supported by a postdoctoral fellowship awarded by The Miller Institute 
for Basic Research in Science, University of California, Berkeley. 
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